Tilted Special Biserial Algberas
نویسندگان
چکیده
Tilted algebras, that is endomorphism algebras of tilting modules over a hereditary algebra, have been one of the main objects of study in representation theory of algebras since their introduction by Happel and Ringel [9]. As a generalization, Happel, Reiten and Smalø studied endomorphism algebras of tilting objects of a hereditary abelian category which they call quasi-tilted algebras [8]. We are concerned with the problem of characterizing these algebras in terms of bound quivers. In our previous paper [12], we have found some simple combinatorial criteria to determine if a string algebra is quasi-tilted or tilted or neither. In this paper, we shall consider the same problem for special biserial algebras which are not string algebras. Note that such an algebra is tilted if and only if it is quasi-tilted since there are some indecomposable projective-injective modules [3]. Our strategy is to study the combinatorial interpretation of some behavious of the homological dimensions of the indecomposable modules. This enables us to find first a combinatorial characterization of the special biserial algebras of global dimension at most two, and then some simple necessary and sufficient conditions for a special biserial algebra to be tilted. As one of the applications, this allows one to construct a large class of new examples of tilted algebras.
منابع مشابه
Tilted String Algebras
Tilted algebras, that is endomorphism algebras of tilting modules over a hereditary algebra, have been one of the main objects of study in representation theory of algebras since their introduction by Happel and Ringel [10]. As a generalization, Happel, Reiten and Smalø studied endomorphism algebras of tilting objects of a hereditary abelian category which they call quasi-tilted algebras [9]. T...
متن کاملThe Yoneda Algebras of Symmetric Special Biserial Algebras Are Finitely Generated
By using the Benson–Carlson diagrammatic method, a detailed combinatorial description is given for the syzygies of simple modules over special biserial algebras. With the help of this description, it is proved that the Yoneda algebras of the algebras mentioned above are finitely generated.
متن کاملOn the Hochschild Cohomology of Tame Hecke Algebras
In this paper we are interested in Hochschild cohomology of finite-dimensional algebras; the main motivation is to generalize group cohomology to larger classes of algebras. If suitable finite generation holds, one can define support varieties of modules as introduced by [SS]. Furthermore, when the algebra is self-injective, many of the properties of group representations generalize to this set...
متن کاملSpecial biserial coalgebras and representations of quantum SL ( 2 )
We develop the theory of special biserial and string coalgebras and other concepts from the representation theory of quivers. These theoretical tools are then used to describe the finite dimensional comodules and Auslander-Reiten quiver for the coordinate Hopf algebra of quantum SL(2) at a root of unity. We also compute quantum dimensions and describe the stable Green ring. Let C = k ζ [SL(2)] ...
متن کاملSpecial biserial algebras with no outer derivations
Let A be a special biserial algebra over an algebraically closed field. We show that the first Hohchshild cohomology group of A with coefficients in the bimodule A vanishes if and only if A is representation finite and simply connected (in the sense of Bongartz and Gabriel), if and only if the Euler characteristic of Q equals the number of indecomposable non uniserial projective injective A-mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004